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BY p-VERSION OF FEM
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(Rl!ceil'ed 23 December 1987; in ret'ised form 6 June 1988)

Abstract-A new hierarchic p-version cylindrical shell element based on exact mapping is presented.
Its rigid-body modes, round-off error. and convergence characteristics are investigated. Its per­
formance in the presence of singularities is demonstrated with the help of three test problems.
namely pinched cylinder problem. lockheed test problem 2. and cracked cylinder problem.

I. INTRODUCTION

Structural shells arc widely used in a broad spectrum of industries. e.g. aerospace. auto­
motive. power generation. railroad. ship building. and chemical. Very often the usage is
characterized by irregularities in the form of discontinuities. complex loading and support
conditions over the surface and at the edges.

In the design of such shells it is necessary to account for the aforementioned irregu­
larities. which may. sometimes. become the source of singularities in the stress field and
hence the potential scat for crack initiation and propagation. alfecting the fatigue life of
the shell untkr cyclic loading conditions.

The soun:es of singularities can he classified under three headings (Rasu and Peano.
IlJXI: Lukasiewicz. IlJ76).

(I) Geometric: re-entrant corners. cracks. cutouts with sharp corners. discontinuities
in curvature and thickness. presence of still"cners. mixed boundary conditions. and the like.

(2) Loading: concentrated sources over the surface and at the edges, line sources over
the surface, and sudden changes in the intensity of the external sources.

(3) Material: sudden changes in material properties, as in the case of laminated
materials.

As the stress gradients in the vicinity of a singular point are very steep, the ,,-version
of the finite element method is expected to perform very well for modeling such probkms
(Basu ('( al.. IlJ77). The main objective of this paper is to develop cylindrical shell elements
hased on the ,,-version of FEM and to study their performance in the case of cylindrical
shells with polygonal cutouts and cracks, as well as in the presence of concentrated loads.

The II-version, which is normally based upon Lagrange polynomial interpolation
through evenly distributed nodal points, is less reliable at the boundaries than in the interior
regions. However in the p-version. the roots of Legendre polynomials, unlike the roots of
Lagrange polynomials, arc not evenly distrihuted in the interval - I < x < I but rather are
closely grouped ncar the endpoints (Basu, 1986). Thus at the end points. very steep strain
gradients can be modeled effectively when integrals of Legendre polynomials are used to
create the hasis functions. These polynomials are able to oscillate with increased frequency
ncar the endpoints and thus are better suited for approximating singular behavior which
occurs at these points than with uniform II-version meshes. In modeling the singular
hehavior caused by sharp cracks, one could however usc a quarter-point element in the
context of the {'-version, to represent the strength of singularity exactly.

It has been demonstrated by numerical experimentation and analytical reasoning that
the rate of convergence of the {'-version is twice the rate for the II-version when severe
corner singularities are present. and the number of degrees of freedom is increased by
uniform or quasi-uniform mesh refinement (Basu and Peano, 1981 : Cheng. 1986; Peano
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et al.. 1978). Moreover. the superior performance of the p-version in modeling transversely
loaded plates with polygonal cutouts. and the classical rhombic plate problem is evidenced
in Basu et al. (1977) and Basu and Peano (1981).

In the conventional h-version. there are three distinct approaches to the finite element
representation of thin shell structures (Ashwell and Gallagher. 1976): (i) in "faceted" form
with flat elements; (ii) by means of degenerated three-dimensional (solid) elements: and
(iii) with elements formulated on the basis of curved shell theory. The shortcomings and
associated difficulties of "faceted" elements are well known.

Corresponding to the six displacement components of a cylindrical shell. that is u. c.
w. 0" 0,. 0=. there should be six rigid-body modes. and hence the element stiffness matrix
should have six zero eigenvalues related to these modes. Different schemes have been put
forward by Cantin (1970) and others for the problem of ensuring rigid-body displacements
in shell elements. In the development of a general shell element of arbitrary thickness and
geometry that reproduced the rigid-body motions exactly. Hansen and Heppler (1985) used
strain~isplacement relationships of the Mindlin type. based on a curvilinear coordinate
system.

2. HIERARCHICAL SHELL ELEMENTS

2.1. Intcgrals of Lc.C/endre shape jimctions
The shape functions used in this study arc bascd on the intc.C/rals or Legcndre

polynomials. Thc lowest order shape functions (p == I) being expressed as

in which subscript "k" refers to the four vertex nodes of the standard clement. as shown in
Fig. I. For each higher p-levcl four more edge share functions (Basu and Peano. InIl. arc
retluired to be added as

(I ±tf}/~,(e) for edges '1 == ± I

(l±e)F"(',, forcdgese== ±I

when~

J
'-_._...,.
(2p-l) ,

Fp(x) = 2 f,Pp-I(r)dt

in which p.(t) is the Legendre polynomial defined by the Rodrigues formula

T/
fJ.

Side 3
4(·1.t) 3(1.1}

Side 4 Side 2 4 (

x I H.·1) 1 (1 •• 1)
1 (tl.'I)

Side 1
1 (t,.I,)

Fig. I. Blend mapping from standard domain to real domain.

(2)

(3)
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(4)

The completeness requirement is satisfied by introducing internal nodes for p ~ 4 as
F,(~)FJ(") with the requirement that i+ j =p and that i.j ~ 2 (Basu and Peano. 1981). In
the case of two-dimensional problems. these shape functions are not exactly orthogonal in
energy norm. unlike the case of one-dimensional problems. but will be nearly so and hence
are expected to give well-conditioned stiffness matrices.

2.2. Blend mapping
[n order to conform better to curved geometries and thus reduce the discretization

error. curved finite elements have been widely used in recent years. The most well known
of such elements are the parametric (iso- or sub-) family of elements.

For mathematical convenience. in general. the shape functions are defined on standard
domains (e.g. triangles. squares. cubes. etc.) and are mapped into the real domain by
suitable coordinate transformations. The most commonly used mappings are linear and
quadratic parametric mappings which have served the h-version well. This is becnuse. in
general. the mapping does not introduce large distortions in the h-version. and nil piecewise
smooth boundaries can be npproximated by a sutlicient number of piecewise quadratic
polynomials.

In the p-version. the size of the clements is usually large and hence the probability of
distortions is more. especially if higher order pammetric mapping is used. unless the
houndary of an clement is represented hy a polynomial in the parametric form. In the case
of non-polynomial houndaries. like circles ~lOd ellipses. pammetric mapping may not work
at all.

In the case of the proposed clement. only the four corners of a quadrilateml clement
will he referred to in mapping from the st~lOdard to the real domain. It is therefore necessary
to lind the mapping function which will exactly map the standard clement to the sides of
the clement induding the four corner nodes by making usc of the exact geometric p~lrumeters

of the curved boundaries (rig. I). This can be achieved by constructing blend mapping
functions (Gordon. 1971). As a special case. the mapping function for an clement bounded
by lines x = eonst. and 0 = eonst. can be expressed as

where

~

x = L M*(~. 'O.\"*
k~1

~

o= L Af*(~. rOOk
k-I

(5)

2.3. Formulation of£'!emellt stiffness matrix
As per standard displacement formulation. the clement stiffness matrix will be

expressed as

[Ke) ± f f [B)T{D][B) dA. (6)

2.3.1. Strain matrix [B). The following strain-displacement relationships are used in
evaluating the stiffness matrix
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2.3.2. Elasticity malrix [IJI. The constitutive relationships for an elastic isotropic
material. in the abscnce of initial stresses and strains, can bc exprcssed as

N, Kl K1 0 0 0 0 0 0 I:,

No K1 K 1 0 0 0 0 0 0 1:0

Nt/I 0 () K\ () () 0 0 0 1:,0

M, 0 () 0 DI /)1 0 0 0 X,
A411 0 0 0 D1 VI 0 0 () XII
A/,o 0 0 0 {} 0 DJ {} 0 X,II

Q, 0 0 0 0 0 0 SI 0 Ip,

QII 0 0 0 0 0 0 0 St . II}II

or

(f::::: Dr

in which D is the constitutive matrix, with

(Xj

£1
Kl =

1-

£t
S I = -.-----.;

2(1+\'):x
C( = 6/5.

The N" M' and QJ represent the membrane, flexural, and transverse shear stress resultants
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per unit length of the shell. It may be noted that eqns (7) and (8) include the effect of
transverse shear deformations, and the inverse of the factor ~ is the so-called shear correction
factor.

After the shape functions are substituted into matrix [8], the element stiffness matrix
can be evaluated from eqn (6). A typical submatrix of [Ke

] linking nodes i and j can then
be evaluated with the expression

in which

dA = R de dx = R det J d~ d'i

det J = determinant of the Jacobian matrix.

3. COMPUTER IMPLEMENTATION

In the program. SHLPV, developed for this study, up to a maximum of 12 x 12 Gauss
point rules for numerical quadrature have been built in. The susceptibility of a matrix to
round-offerrors in the solution of a simultaneous equation is characterized by the condition
numher (CN). It can be shown that the maximum number of digits lost in numerical
operations involving a given matrix is not greater than log (CN).

As ;\ result. the shape functions that perform better numerically are the ones that will
result in a stiffness matrix that has a smaller condition number. In general, the stiffness
matrix [1..1 will he ideally well-conditioned if CN is close to one, and ill-conditioned when
eN is significantly greater than one. In order to calculate the CN of the stiffness matrix one
has to extract the largest and smallest eigenvalues of the following equation. In this study
the Jacobi method is adopted for this purpose

([K]-).[l]){u} = o. (9)

The condition number can then be defined as eN = 1)'ma,l/l).mml and the loss ofsignifieant
digits will he log (eN), approximately.

In the case of shell elements with a central angle of90", a radius of 4.953 in., a Poisson's
ratio of 0.3125. a Young's modulus of 10.5 x lOb and Rlr ratios of 16.5, 52.69, and 319.96.
the variation of the loss of significant digits with p-Ievel are shown in Fig. 2. It can be seen
that the maximum number of digits lost lies between 2 for p = 1-5,6, or 7 for.\ thick, thin
and very thin shdl when p = 8. It may be noted that for p ~ 3, the number of digits lost
remains virtually unchanged .

..
~
til.......,
o

V R/~-16.S1 (THICK)
o R/~-S2,69 (THIN!
a R/~.J19, 96 (VERY THIN!

2 • •P-LEVEL • •
Fig. 2. C(1ndition number of cylindrical shell element (R = 4.953 in., v = 0.3125, £ = 10.5 x 10·,

central angle = 90').
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Table L Eigenvalues of cylindrical thin
shell element when p = 8

Eigenvalue

i., 0,77594E- 10
A, 0,56157E-09
.',< 0,3639IE-09
.'" O.42362E-02
.'" O,79~67E-04

i, O,18612E-09
.'., 0,320 15E -HJ2
.'" O,35772E'" 02
.'" (U9425E ... 02
~'m,,, 0, I WISE -r o~

The first nine eigenvalues for a cylindrical shell element which is a quarter-cylinder
with R = 4,953 in .. t = 0.094 in. are shown in Table \. It may be noted that the first six
eigenvalues are small enough. compared to the remaining eigenvalues. to be treated as zero
and hence Ihe proposed element satisfies the rigid-body motion requirements.

4, NUMERICAL RESULTS

4.\. Pinched cylindrical shell
Two prohkms are considered. one a thin shell with R/t = 53. and the other a very thin

shell with Ri( = 320. The first shell was analyzed by Bogner et al. (\967). Recently this
prohkm was solved hy Hansen and Heppkr (1985) and Carpenter et al. (1986). It has a
radius of 4.953 in .. a thickness of 0.094 in .. and a pinch load of 100 lb. The second shell
has the same radius as the lirst hut its thickness is taken as 0.01548 in .. and its pinch load
is 0.\ tho For hoth shells. the Young's modulus is taken as 10.5 x 10" psi and Poisson's ratio
as 0.3\25. Because of the symmetry only one octant of the shell. as shown in Fig. 3, is
considered.

In the case of the first shell the radial dellection under the point load hased on thin
shell equations is O.IOX4 in. (Timoshenko and Woinowsky-Krieger. 1959). An ABAQUS

R=4.953 in, t=0.094(or 0.01548) in

E=1O.5xI06, v=0.3125
P=tOO(or 0,1) Ibf

O.2~

O.25xI A
l:kJ

I-Elmnt 2-Eletlents Hlenents

Fig. 3. '\11 "ctant "f the pinched cylinder pronlcm ami mesh rclinement.
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Table 2. Deflection (in.) under point load for thin pinched cylinder problem

157

Ashwell and Thomas and Cantin and
Cantin Sabir Gallagher Bogner f!t a/. Clough

Mesh (1970) (1972) (1975) (1967) Mesh (1968)

I x I 0.1O~(20) 0.0048(19) 0.0025(48)
I x 2 0.0802(72) I x3 0.0297(48)
I x~ 0.1106(50) 0.1107(67) 0.1087(120) I x 5 0.0769(72)
I x 8 0.1119(131) I x 7 0.0987(96)
2x:! 0.0931(5~) 0.1103(45) 0.0808( (08) I x9 0.1057(120)
4x4 0.1126(150) 0.11:!9( 125) 2x9 0.1073(180)
6x6 0.1137(29~) 0.1135(245) 3 x~9 0.1128(1200)
8x8 0.1 1J9(486) 0.11J7(405)

lOx 10 0.1139(726) 0.1137(605)

5x5 0.1135(390) ABAQUS S8R element
10 x 10 0.1115(540) ABAQUS S4R element

I x I 0.1126( 1(0) P = 8 by p-version
2x:! 0.1134( 125) P = 5 by p-version

Figures in parentheses give NDOF.

(1985) solution based on a [5 x 5] mesh of S8R elements is found to be 0.1135 in. and with
a (lOx 10] mesh of S4R elements the value is 0.1115 in. The results for this problem
published by different authors and those by the p-version (i.e. present study) are shown in
Table 2. The importance of rigid-body modes is evident from the results of Cantin and
Clough (1968) with a [3 x 49] mesh. A deflection of 0.1128 in. was obtained by them when
the rigid-body modes were included and the value was 0.05583 in. when the rigid-body
modes were excluded. The p-version result is 0.1126 in. with a single eighth-order clement.

Table 3 shows the deflection (in.) under the pinch load for the very thin pinched
cylinder problem. The best available analytical result is 0.02439 in. (Ashwell and Gallagher.
1976). An A BAQUS (19~5) solution based on a [5 x 5] mesh of S8R clements is found to
be 0.02453 in. and with a [10 x 101 mesh of S4R elements 0.02405 in. The p-version result
with a single eighth-order element (NDOF = 110) is 0.024413 in.

The convergence characteristics of maximum deflection and total potential energy for
a singk element model of the thin cylinder. as the p-Ievel is increased from four to nine. are
shown in Figs 4 and 5. With just one element the results appear to converge at a p-Ievel
of6.

The elrect of mesh re/inement. keeping the p-Ievel fixed at 5. is shown in Table 4. The
meshes used for this purpose are graded towards the point load. as shown in Fig. 3. With
one element and p = 9. the maximum deflection is 0.1130 in. Whereas in Table 4 the graded
four-element model with p = 5 gives a value of 0.1134 in. Therefore. a graded mesh with a
sufficiently high p-Ievel leads to better results with somewhat fewer degrees of freedom.

To achieve the same degree of accuracy. the CPU time requirements of the p-version
solution with one element was found to be 13.86 s as compared to 29.43 s with ABAQUS

Table 3. Delleetion (in.) under point load for very thin pinched cylinder problem

Ashwell and Sabir Thomas and Gallagher Cantin and Clough Sabir and Lock
Mesh (1972) (1975) (1968) (1972)

I x I 0.2301(20) 0.00003( 19) OOסס.0 I(24) OO1(20)סס.0

Ix2 0.01582(35)
Ix4 0.02403(50) 0.02327(67) 0.00074(64) 0.00063(50)
Ix6 0.02440(99)
1)(8 0.02406(90) 0.02~67( (31) 0.OO700( lOR) 0.00691 (90)
2)(1l 0.02414(135) 0.00699( 162) 0.00694(135)
3)(R 0.0241l!( 11l0) 0.00699(216) 0.OO696( (80)
8)(1l 0.02~3 I(405) 0.00708(486) 0.00706(405)

5x5 0.02453(90) ABAQUS SRR element
lOx III 0.02405(540) ABAQUS S4R element

1 x I 0.02~ I(110) p = 8 by p-version

Figures in parentheses give NDOF.
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hased on the [10 x 101 S4R modd and 26.69 s hy the [5 x 51 SXR dement. These runs were
made on a YAX-gSOO computer. It is expected that more spectacular savings in CPU time
can he achieved with the {I-version if a more eflicient equation solver and quadrature
algorithm arc uscd. It is worthwhilc to note that to achieve the samc kvd of accuracy, a
singk fifth-order dement rcquires 13.86 s of CPU time whereas 41) quadratic dements
require 65.77 s of CPU time when both runs are made with SHLPY.

4.2. Luckheed lesl pruhlem ::
A problem with a cylindrical shell with two symmetrically located n:ctangular cutouts.

subjectcd to axial displacement. was solved. This problem was chosen heeause of the high
quality of the dements used and the availability of well-documented solutions by means of
other computer codes (Szabo el al., 1976: Rossow el al.. 1975).

The most challenging aspect of this problem is that the re-entrant corners of the cutout
arc singular points. that is, an clastic analysis wil1 give infinite stresses at these points. The
question is whether approximations based on a fcw high order p-version finite ekments can
perform as wdl as approximations based on a large number of lower order conventional

Tahle -t. Results of mesh refinement with I' = 5

Numher "I' mc'sh
clements

2

N[)OF

3-t
70

125

PE.

-O.13SE+ 1
-O.139E+ 1
-01-t2E+1

W"" .. (in.)

n,ll n I.. I
n.111125
O.113-t 17
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Fig. 6. Cylinder with cutouts (S,ah() ('/ al.. 1976).

lini[e elements in representing the state of stress in the neighborhood of the re-entrant
corners.

The details of the problem. known as "Lockheed test problem 2" arc shown in
Fig. 6. The boundary conditions at the ends of the shell arc t' = W = 0, = (), = 0 and
/I = const. = 0.2 x 10 .\ in. Because of symmetry. only one octant of the structure has to be
modeled. The problem was solved wi[h the program 511 LPV by increasing the number of
elements from J to 5 when I' = 9. The solution appeared to converge with I' = 9 and a
three-element mesh. as shown in Fig. 7.

In Figs 7 -12. the results of the p-version arc compared with those of the program
TRISH L developed by the National Aeronautical Establishment of Canada and the Con­
straint Method progr.lm developed .It Washington University.

The five-element Sl-:IlPV mesh used in the analysis of the problem is inset in Figs 7­
12. The IOD-dement TRISHl mesh and the ten-clement Constraint Method mesh arc
shown in Fig. 13. [n Table 5. a comparison is provided of the number of clements and the
degrees of freedom used in the application of several computer programs to the test problem.

J.o,..--~~-~--~--"---~---,

"l TRISK.
o CONSTRAINT tETHOO
C SH..PVC P-9. J ELEI"£NTSl
- SH..PVC P-9. S ELEI"£NTSl

•. 5

e.. 1 •• 5 J.. '.5 •.•
DEGREE X '0"

7.5 •••

Fig. 7. Normal displilcement along centcrlinc of shcll (x = 4.5 in.).
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Fig. 10. Axial normal force distribution at x 3 in.
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Particular mention should be made of the drastic reduction in the number of finite elements
(three dements) required by the p-version program. SHLPV. The required number of
elements reported in the published literature ranged from 10 to 476 and the NDOF from
500 to 2457. The three-element (NDOF = 340) SHLPV model gave very good approxi­
mations of both deflections and stresses. Moreover. the CPU time required was found to
be highly competitive with those reported by others.

The greatest discrepancies appearing between the Constraint Method. TRISHL, and
Sit LPV results arc shown in Fig. 9. The magnitude of the displacements by the Constraint
Method shown in this figure arc. however. relatively small. actually more than two orders
of magnitude smaller than the largest computed displacement. The results ofSf ILPV appear
to agree more closely with those ofTRISIIL. In Figs 10 12. the axial forces and bending
moments existing in the shell in the vicinity of the re-entrant corner arc shown. It may be
noted that multi-valued stress predictions an: shown for the re-entrant corner. depending
upon the element being considered.

Since the SH LrV program is based on shear deformation theory. the normal dis­
placements arc a little larger than those by TRISH L and the Constraint Method. The
bending moments agree very well everywhere including the re-entrant corner.

4.3. Elastic t!Jrllll,cj!J-lI'all cracked cylinder
Figure 14 shows a cylinder containing a circumferential through-wall crack with a total

included angle of 20. R being the mean radius and t the wall thickness. The crack length

-2.&;.------~-------~--

V TRISH..
o CONSTRAINT ~THOO

-2. 0 SH..PV( P-9, J ELEI"ENTSl
- SH..PV( P-9, 5 ELErENTSl

:'ll~",,'

2 ,

u,·
I

o'
OJ'" C

Eta

-•. ~,.....",~~~.:;•.,.==••~~~r---------l

•• &. J &

X ( INCH>

Fig. 12. A~ial bending moments at 1/ = 22.5 .
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h~. 1.1. One hlllldred-demcnt TRISII L mesh and ten-dement Constraint I\kthod mesh (Rossow
,./ <it., (975).

(2i1) in the ein:umferential diredion is then 20R. The loading is considered to be due to a
remotely applied axial tensile force P. The Virtual Crack Extension Method was employed
to cakulate the stress intensity factor, K, using the relationship: G = K~/E, when.: G is the
energy release rate. E was taken to be 0.2 x 10" psi, R = 30 in. and Poisson's ratio I' = IU.
For cylinders under tension loading, K can be expressed as

'"= P. ()I\. ,(Tw)F( , R,t, I').
2rr Rt

( 10)

Paramcter F is variously described as the shape factor, the non-dimensional geometric
dependent codlicient of the stress intensity factor or the geometrical magnilication factor.

T;lhle 5. Lo<:khwd tl'St prnhlem 2; cl1mpari.sol1 or key compulational pMalllelers

SIiELL'l
STAGS
REXBAT
TRISIIL
Conslralllt method

51 ILPV I'-vcrsi,'n

Source rcfcrctH.:'cs

Gulf General Atomic. Inc.
L"Ckhceu Missiles & Space Corp.
LllCkhceu Missiles & Space Corp.
:\ational Aef\)nautical Estahlishmel1t, Canada
Washington University

Vanderhilt University

Numher of
dements

.p(,

.142
241
100

10

Degrees l1f
frccdllm

2457
I-tn
1125
6.17
500

(6 (, 7 etsc)

.140
({' ~ lJ)



Analysis of singular cylindriC'.u shells by p-version of FEM 163

p- -p

4---

Fig. 14. Through-wall cracked cylinder under tension.

The valuc of K for a fairly broad range of values of () and RII with v = 0.3 have been
presented by Folias (1967). Erdogan and Delalc (1979). Sanders (1982). Kumar ('I al.
(1984). and Zahoor (1985) using dilrerent methods. For RII = 10 and 20 = 90 '. thc SH LPV
model with" = 8. and four elements gives F = 1.74020. which is in excellent ugreement
with the F valuc of I.72656 ohtained using the short cr;tck expression of Sanders (1982).
For RJ1 = 5 and 20 = 90 '. the F value computed by the same SII Lf)V model is 1.52953
which again is in very good agreement with the result of 1.56254 obt.tined by Zahoor (1985).
The third case examined corresponds to RII = 20 .lOd 20 = 90'. In this ease the same
SII LPV model ;tS above gives F = 2.10615. which compares very well ;Igain with the solution
of 2.07495 obtained by Zahoor (1985) and the solution of 1.974 obtained by Kumar el al.
(1984). Monotonic convcrgence of the shape factor, j.: as the ,,-Ievel with a four-element
SHLPV model is increased from I to 8 is shown in Fig. 15. Figure 16 shows the excellent
agreement of F values for difrerent crack lengths obtained by SHLPV and those by Sanders
(1982) and Zahoor (1985).

In obtaining the value of K Kumar ef til. (1984) used the software ADINA. The finite
element model consisted of242 nine-noded thin shell clements and 989 nodes. On the other
hand to achieve the same degree of accuracy, SH LPV required only four eighth-order
elements involving 153 nodcs and 555 degrees of freedom.
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Fig. 15. Values of Fwith ditferent p·levcls (R!t = 10.211 = 30).
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5. CONCLUSIO~S

Hierarchic shell elements of high order using exact hlend mapping satisfies all the
requirements of constant strain states and rigid-hody modes. The stilTnt:ss matrix based on
the proposed e1emcnt is well conditioned even when very high levels of p are used.

In the case of the pinched shelltcst prohlem, modeling of one octant of the shell with
just one element of ninth order leads to a very accurate value for maximum deflel.:tion
(0.113 in.). Although a graded model consisting of four tifth-order clements leads to a slightly
hetter value for the maximum ddkction (0.1134 in.). the SHLPV motlels arc found to he
wmputationally more cllicient than A BAQUS models.

In the case of the Lock heed test prohlem, the proposed p-version elements proved to
he very dlicient both in tcrms of accuracy and computational elliciency. To achieve the
same order of accuracy in displacements and stresses. the prohlem was solved with three
and five p-version elements as compared to ten elements by the Constraint Method and 100
e1emen ts by T R ISH L.

[n the case of the I.:racked shell problem it is found that reliable values of the stress
intensity factor can be obtained with only a four-element model.

The proposcd p-vcrsion shell e1emcnt is thercfore a worthy alternative to thc existing
cylindrical shell dcmcnts.
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